Pitagoras y la importancia de las matematicas

Pitágoras de Samos (aproximadamente 582 adC - 507 adC, en griego: Πυθαγόρας ο Σάμιος) fue un filósofo y matemático griego, famoso sobre todo por el Teorema de Pitágoras (En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma del cuadrado de los catetos.)
Pitágoras, nació en la isla de Samos en el año 582 a.C. Siendo muy joven viajó a Mesopotamia y Egipto (también, fue enviado por su tío, Zoilo, a Mitilene a estudiar con Ferécides de Syros y tal vez con su padre, Babydos de Syros). Tras regresar a Samos, finalizó sus estudios, según Diógenes Laercio con Hermodamas de Samos y luego fundó su primera escuela durante la tiranía de Polícrates.
Abandonó Samos para escapar de la tiranía de Polícrates y se estableció en la Magna Grecia, en Crotona (o Crotón), en el sur de Italia, donde fundó su segunda escuela. Las doctrinas de este centro cultural eran regidas por reglas muy estrictas de conducta. Su escuela (aunque rigurosamente esotérica) estaba abierta a hombres y mujeres indistintamente, y la conducta discriminatoria estaba prohibida (excepto impartir conocimiento a los no iniciados).
Sus estudiantes pertenecían a todas las razas, religiones, y estratos económicos y sociales. Tras ser expulsados por los pobladores de Crotona, los pitagóricos se exiliaron a Tarento donde se fundó su tercera escuela.
Su escuela de pensamiento afirmaba que la estructura del universo era aritmética y geométrica, a partir de lo cual las matemáticas se convirtieron en una disciplina fundamental para toda investigación científica.
Pitágoras pasa por ser el introductor de pesos y medidas, y elaborador de la teoría musical; el primero en hablar de "teoría" y de "filósofos", en postular el vacío, en canalizar el fervor religioso en fervor intelectual, en usar la definición y en considerar que el universo es una obra sólo descifrable a través de las matemáticas. Fueron los pitagóricos los primeros en sostener la forma esférica de la tierra y postular que esta, el sol y el resto de los planetas conocidos, no se encontraban en el centro del universo, sino que giraban en torno a una fuerza simbolizada por el número uno.
Los pitagóricos eran una organización griega de astrónomos, músicos, matemáticos y filósofos, que creían que todas las cosas son, en esencia, números. El grupo mantuvo en secreto el descubrimiento de los números irracionales, y la leyenda cuenta que un miembro fue ahogado por no mantener el secreto (véase Hipaso de Metaponto). El pentagrama (estrella de cinco puntas) fue un importante símbolo religioso usado por los pitagóricos, que lo denominaban "salud".
La escuela Pitagorica
Los postulados de la escuela son: En su forma más profunda, la realidad es de naturaleza matemática La filosofía sirve para la purificación espiritual El alma puede alcanzar la unión con el divino Ciertos símbolos tienen significado místico Todos los miembros de la orden deben conservar lealtad y secreto estricto
Doctrina
Esta escuela está definida por un modo de vivir de sus miembros, gentes emigradas, expatriadas; forasteros, en suma. Según el ejemplo de los juegos olímpicos, hablaban los pitagóricos de tres modos de vida: el de los que van a comprar y vender, el de los que corren en el estadio y el de los espectadores que se limitan a ver. Así viven los pitagóricos, forasteros curiosos de la Magna Grecia, como espectadores. Es lo que se llama el bios teoretiós, la vida teorética o contemplativa. La dificultad para esta vida es el cuerpo, con sus necesidades, que sujetan al hombre. Es menester liberarse de esas necesidades.
Una visión en conjunto de las contribuciones matemáticas que se atribuyen a los pitagóricos produce un marcado contraste, siendo las contribuciones más importantes del grupo del tipo geométricas mientras que las contribuciones aritméticas son pobres y escasas. Este hecho resulta un tanto paradójico si se tiene en cuenta la concepción pitagórica de la omnipotencia del número, esencia de todas las cosas.
Esta aparente contradicción se explica como consecuencia del desciframiento de las tablillas cuneiformes de este siglo. Según Neugebauer, "lo que se llama pitagórico en la tradición griega debería probablemente ser llamado babilonio", pues los pitagóricos habrían aprehendido sus conocimientos matemáticos en la aritmética y en el álgebra de los babilonios. Más tarde, imprimieron estos conocimientos en su propio estilo con un carácter específicamente griego, anteponiendo al carácter operativo e instrumental de los babilonios el rigor lógico y la demostración matemática.
Los pitagóricos hacen el descubrimiento de un tipo de entes, los números y las figuras geométricas que no son corporales, pero que tienen realidad y presentan resistencia al pensamiento; esto hace pensar que no puede identificarse sin más el ser con el ser corporal, lo cual obliga a una decisiva ampliación de la noción del ente. Pero los pitagóricos, arrastrados por su propio descubrimiento, hacen una nueva identificación, esta vez de signo inverso: el ser va a coincidir para ellos con el ser de los objetos matemáticos.
Los números y las figuras son la esencia de las cosas; los entes son por imitación de los objetos de la matemática; en algunos textos afirman que los números son las cosas mismas. La matemática pitagórica no es una técnica operatoria, sino antes que ello el descubrimiento y construcción de nuevos entes, que son inmutables y eternos, a diferencia de las cosas variables y perecederas. De ahí el misterio de que se rodeaban los hallazgos de la escuela, por ejemplo el descubrimiento de los poliedros regulares. Una tradición refiere que Hipaso de Metaponto fue ahogado durante una travesía o bien naufragó, castigado por los dioses por haber revelado el secreto de la construcción del dodecaedro.
Por otra parte, la aritmética y la geometría está en estrecha relación: El 1 es el punto, el 2 la línea, el 3 la superficie, el 4 el sólido; el número 10, suma de los cuatro primeros, es la famosa tetraktys, el número capital. Se habla geométricamente de números cuadrados y oblongos, planos, cúbicos, etc. Hay números místicos, dotados de propiedades especiales. Los pitagóricos establecen una serie de oposiciones, con las que las cualidades guardan una extraña relación: lo ilimitado y lo limitado, lo par y lo impar, lo múltiple y lo uno, etc. El simbolismo de estas ideas resulta problemático y de difícil comprensión.
La escuela pitagórica creó también una teoría matemática de la música. La relación entre las longitudes de las cuerdas y las notas correspondientes fueron aprovechadas para un estudio cuantitativo de lo musical; como las distancias de los planetas corresponden aproximadamente a los intervalos musicales, sé pensó que cada astro da una nota, y todas juntas componen la llamada armonía de las esferas o música celestial, que no oímos por ser constante y sin variaciones. Inmortalidad del alma Para los pitagóricos la muerte era una necesidad que convenía al devenir (naturaleza) de la vida universal, o como un incomodo bien ante las situaciones de extrema postración humana. Ante la pregunta, qué es lo que permanece y en donde, en Grecia y en Roma se concebía la muerte como el paso a una segunda existencia, y por tanto no como una extinción definitiva, sino como un cambio de estado que acontece a algo oculto e invencible. Vale resaltar que en Grecia había por así decirlo una religión olímpica y una en donde se creía que después de la muerte había otra vida en donde se encontraba la recompensa al sufrimiento de este mundo.
Esta ideología era propia de la gente más pobre y campesina.
Los pitagóricos tenían una concepción de unidad de cuerpo y alma, en donde el alma después de la muerte se separaba del cuerpo, esa separación era la misma muerte. Después de la muerte del individuo el alma, que es una especie de sombra fantasmagórica, peregrinaba a través de todo, con el fin de reencarnar sucesivamente en otros cuerpos.
Este es el fundamento de la palingenesia, denominada también metempsicosis o trasmigración del alma. Por esta razón los pitagóricos no rechazaban ningún estilo de vida, puesto que el alma podía transitar por cualquiera de ella.
El alma era considerada la antítesis del cuerpo (negación), era el lado de la perfección humana, lo bueno, lo puro, lo racional, y el cuerpo era todo lo que simbolizaba lo malo o lo corruptible.
El Número como principio de todas las cosas [editar] Como dice Aristóteles los pitagóricos se dedicaron a las matemáticas, fueron los primeros que hicieron progresar este estudio y, habiéndose formado en él pensaron que sus principios eran los de todas las cosas. "Nutridos de ella (la matemática), creyeron que su principio fuera el de todas las cosas. Ya que los números por su naturaleza son los primeros que se presentan en ella, les pareció observar en los números semejanzas con los seres y con los fenómenos, mucho más que en el fuego, o en la tierra o en el agua y como también veían en los números las determinaciones y las proporciones de las armonías y como, por otra parte, les parecía que toda la naturaleza estaba por lo demás hecha a imagen de los números, y que los números son los primeros en la naturaleza, supusieron que los elementos de los números fuesen los elementos de todos los seres y que el universo entero fuese armonía y número. Y todas las concordancias que podían demostrar en los números y en las armonías con las condiciones y partes del universo y con su ordenación total, las recogieron y coordinaron." Aristóteles. Tenían el entusiasmo propio de los primeros estudiosos de una ciencia en pleno progreso, y les cultivó la importancia del número en el cosmos: todas las cosas son numerables, y muchas las podemos expresar numéricamente. Así la relación entre dos cosas relacionadas se puede expresar por una proporción numérica; el orden existente en una cantidad de sujetos ordenados se puede expresar mediante números, y así sucesivamente. Pero lo que parece que les impresionó más que nada fue el descubrir que los intervalos musicales que hay entre las notas de la lira pueden expresarse numéricamente. Cabe decir que la altura de un sonido depende del número, en cuanto que depende de las longitudes de las cuerdas, y es posible representar los intervalos de la escala con razones numéricas. A partir de esto surge la idea de cantidad (to pason), lo cuantitativo como principio y esencia de la realidad, es decir, que lo cualitativo se determina en lo cuantitativo. Pues bien, lo mismo que la armonía musical depende de un número, se puede pensar que la armonía del universo depende también del número. Los cosmólogos milesios hablan de un conflicto universal de los elementos contrapuestos, y los pitagóricos, gracias a sus investigaciones en el campo de la música, tal vez pensasen solucionar el “conflicto” recurriendo al concepto de número. Según Aristóteles, “como vieron que los atributos y las relaciones de las escalas musicales se podían expresar con números, desde entonces todas las demás cosas les parecieron modeladas en toda su naturaleza según los números, y juzgaron que los números eran lo primero en el conjunto de la naturaleza y que el cielo entero era una escala musical y un número”. Mas lo que uno cree entender de los pitagóricos es que quisieron decir que el carácter verdadero no lo determinaba la apariencia sensible sino que lo establece un componente cuantitativo aritmo–geométrico que esta referido tanto al número (cantidad discreta) como a la magnitud (cantidad continua); o sea, que tal ingrediente matemático afecta la cualidad de las cosas. Este lenguaje matemático no era usado solo para explicar el mundo, también era usado en las entidades excluidas, las que tenían que ver con las esferas subjetivas, el hombre, la justicia, el arte, la medicina y hasta las estaciones, pues todo esto requería de números, proporción y medida. El lenguaje de la realidad es entonces para los pitagóricos, un logos matemático (razón, armonía y medida). Anaximandro había hecho derivar todo de lo Ilimitado o Indeterminado. Pitágoras combinó esta noción con la de límite, que da forma a lo ilimitado. Ejemplo de todo ello es la música (y también la salud, en la que el límite es la templanza, cuyo resultado es una sana armonía). La proporción y la armonía de los sones musicales son expresables aritméticamente. Transfiriendo estas observaciones al mundo en general, los pitagóricos hablaron de la armonía cósmica. Y, no contentos con recalcar la importancia de los números en el universo, fueron más lejos y declararon que las cosas son números. Evidentemente, tal doctrina no es de fácil comprensión. Se hace duro decir que todas las cosas son números. ¿Qué entendían por ello los pitagóricos? En primer lugar, ¿qué entendían por números o qué es lo que pensaban acerca de los números?. Aristóteles nos informa que “los pitagóricos sostenían que los elementos del número son lo par y lo impar, y que, de estos elementos, el primero es ilimitado y el segundo limitado; la unidad, el uno, procede de ambos (pues es a la vez par e impar), y el número procede del uno; y el cielo todo, es números”. Los pitagóricos consideraron los números espacialmente. La unidad es el punto, el dos es la línea, el tres la superficie, el cuatro el volumen. Decir que todas las cosas son números significaría que “todos los cuerpos constan de puntos o unidades en el espacio, los cuales, cuando se los toma en conjunto, constituyen un número”. La Tetraktys: el número diez
La tetraktys, figura que tenían por sagrada, indica que los pitagóricos consideraban así los números. Esta figura demuestra que el 10 resulta de sumar 1+2+3+4,o sea, que es la suma de los cuatro primero números enteros. Por ella hacían el juramento transmitido como pitagórico, hecho en nombre de Pitágoras mismo, pero sin nombrarlo, “por quién transmitió a nuestra alma la tetraktys”. La tetraktys es el número perfecto y la clave de la doctrina. Es posible que jugase también un papel en los distintos grados de la metamorfosis del alma.
El diez tiene el sentido de la totalidad, de final, de retorno a la unidad finalizando el ciclo de los nueve primeros números. Para los pitagóricos es la santa tetraktys, el más sagrado de todos los números por simbolizar a la creación universal, fuente y raíz de la eterna naturaleza; y si todo deriva de ella, todo vuelve a ella. Es pues una imagen de la totalidad en movimiento.
La tetraktys forma un triángulo de 10 puntos colocados en cuatro líneas, de la forma siguiente: La Unidad: Lo Divino, origen de todas las cosas. El ser inmanifestado. La Díada: Desdoblamiento del punto, origen de la pareja masculino-femenino. Dualismo interno de todos los seres. La Tríada: Los tres niveles del mundo: celeste, terrestre, infernal, y todas las trinidades. El Cuaternario: los cuatro elementos, tierra, aire, fuero y agua, y con ellos la multiplicidad del universo material. El conjunto constituye la Década, la totalidad de Universo: 4: 1 + 2 + 3 + 4 = 10 = 1 + 0 = 1. Todo es Número: el número como explicación de la realidad
Además los pitagóricos, concebían los números con un carácter pedagógico, pues como ellos no hay otros que tengan mayor capacidad explicativa. El número tenía un sentido genérico y decisivo en la construcción del cosmos. El comienzo es lo Uno (monas), es indeterminada y de naturaleza divina, semejante al apeiron de Anaximandro. De lo uno limitado (denominado así porque no es aún una dualidad numérica o completa, pues lo uno no es el uno cuantitativo, sino un género supremo), surge la díada indefinida (aoristos duas). Pues de la unión de estos dos surge el uno y el dos numérico, es decir, de lo uno el uno y de lo uno y de la díada indefinida el dos. Por extensión surgen los demás números
Lo uno debemos entenderlo como identidad en tanto la propiedad que tienen las cosas de ser ellas mismas, la díada debemos entenderla como las diferencias pues es en este pensamiento el que liga la identidad con la diferencia, que asume la unidad y la dualidad como los elementos de lo verdadero.
Eurito solía representar los números con piedrecillas, y por este procedimiento, obtenemos los números “cuadrados” y los números “triangulares”.
En efecto, si partiendo de la unidad vamos añadiendo sucesivamente los números impares conforme al “gnomon”, obtenemos los números cuadrados; mientras que si partimos de dos y le vamos añadiendo los números pares, obtenemos los números triangulares. n(n + 1)/2
Esta costumbre de representar los números o relacionarlos con la geometría ayuda a comprender por qué los pitagóricos consideraban las cosas como números y no sólo como numerables: transferían sus concepciones matemáticas al orden de la realidad material.
Por la yuxtaposición de puntos se engendra la línea, la superficie es engendrada por la yuxtaposición de varias líneas y el cuerpo por la combinación de superficies.
Puntos, líneas y superficies son las unidades reales que componen todos los cuerpos de la naturaleza, y en este sentido todos los cuerpos deben ser considerados como números. Cada cuerpo material es una expresión del número cuatro, puesto que resulta como un cuarto término de tres clases de elementos constitutivos (puntos, líneas y superficies). Noción de límite y armonía Para los pitagóricos, el cosmos limitado o mundo, está rodeado por el inmenso o ilimitado cosmos (el aire), y aquél lo “inhala”. Los objetos del cosmos limitado, no son, pues pura limitación, sino que tienen mezcla de lo ilimitado. Los pitagóricos al considerar geométricamente los números, los concebían también como productos de lo limitado y lo ilimitado (por estar compuestos de lo par y lo impar). Identificándose el par con lo ilimitado y lo impar con lo limitado.
Una explicación complementaria puede verse en el hecho de que los gnómones impares conservan su forma cuadrada fija (limitada), mientras que los pares presentan una forma rectangular siempre cambiante (ilimitada).
Para los Pitagóricos, no sólo la tierra era esférica, sino que no ocupaba el centro del universo. La tierra y los planetas giraban a la vez que el sol en torno al fuego central o “corazón del Cosmos” (identificado con el número uno).
Para ellos la esencia de las cosas era la Armonía de los contrarios lo cual constituía el limite que determina el ser preciso de las cosas en tanto que todo ser lo es dentro de determinados acontecimientos figuradores.
La forma, progresión, armonía corporal no son caprichosos sino que son reglas que se ajustan a determinadas medidas proporcionales (armonía), pues el límite es control ante los desmanes, la cordura frente a las pretensiones desmedidas. Así, de esta manera, el límite constituía el equilibrio y la armonía, la fuerza que unía los contrarios. Crisis del racionalismo numérico El pensamiento pitagórico se levanta sobre una estructura matemático–racional. Lo que no sabían es que desde el mismo ámbito matemático provendría un descubrimiento que pondría en crisis aquellos fundamentos, pues se trataba del descubrimiento de lo irracional, de la raíz cuadrada de dos.
Los pitagóricos supieron que el número podía medirlo todo, entendiendo por medir lo que para ellos es expresable en su naturaleza mediante un número entero o razones entre números enteros. Pues esta convicción no era aplicable a la relación entre los lados de un cuadrado y la diagonal, pues los pitagóricos encontraron que en el caso del lado y la diagonal del cuadrado no existe ningún patrón que los mida exactamente a ambos.
Este hallazgo de los pitagóricos tiene una gran incidencia negativa en la escuela, ya que cuestionaba los cimientos de su racionalismo numérico en el cual tenían afianzado su convencimiento de la gran coherencia interior y la solidez de su doctrina, pues encontraron que la relación entre el lado y la diagonal de un cuadrado no se podía someter a la perfección que era el Número, lo cual causó grandes desequilibrios entre los pitagóricos.

Comentarios

Entradas más populares de este blog

Los primeros pasos para ingresar a la Masoneria

“Los hermanos” de Bolívar

La Religion para el Mason